23 research outputs found

    Continuum model for polymers with finite thickness

    Full text link
    We consider the continuum limit of a recently-introduced model for discretized thick polymers, or tubes. We address both analytically and numerically how the polymer thickness influences the decay of tangent-tangent correlations and find how the persistence length scales with the thickness and the torsional rigidity of the tube centerline. At variance with the worm-like chain model, the phase diagram that we obtain for a continuous tube is richer; in particular, for a given polymer thickness there exists a threshold value for the centerline torsional rigidity separating a simple exponential decay of the tangent-tangent correlation from an oscillatory one.Comment: 8 pages, 4 figures. Accepted for publication in J. Phys.

    Highly Designable Protein Structures and Inter Monomer Interactions

    Full text link
    By exact computer enumeration and combinatorial methods, we have calculated the designability of proteins in a simple lattice H-P model for the protein folding problem. We show that if the strength of the non-additive part of the interaction potential becomes larger than a critical value, the degree of designability of structures will depend on the parameters of potential. We also show that the existence of a unique ground state is highly sensitive to mutation in certain sites.Comment: 14 pages, Latex file, 3 latex and 6 eps figures are include

    Monotonicity, frustration, and ordered response: an analysis of the energy landscape of perturbed large-scale biological networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>For large-scale biological networks represented as signed graphs, the index of frustration measures how far a network is from a monotone system, i.e., how incoherently the system responds to perturbations.</p> <p>Results</p> <p>In this paper we find that the frustration is systematically lower in transcriptional networks (modeled at functional level) than in signaling and metabolic networks (modeled at stoichiometric level). A possible interpretation of this result is in terms of energetic cost of an interaction: an erroneous or contradictory transcriptional action costs much more than a signaling/metabolic error, and therefore must be avoided as much as possible. Averaging over all possible perturbations, however, we also find that unlike for transcriptional networks, in the signaling/metabolic networks the probability of finding the system in its least frustrated configuration tends to be high also in correspondence of a moderate energetic regime, meaning that, in spite of the higher frustration, these networks can achieve a globally ordered response to perturbations even for moderate values of the strength of the interactions. Furthermore, an analysis of the energy landscape shows that signaling and metabolic networks lack energetic barriers around their global optima, a property also favouring global order.</p> <p>Conclusion</p> <p>In conclusion, transcriptional and signaling/metabolic networks appear to have systematic differences in both the index of frustration and the transition to global order. These differences are interpretable in terms of the different functions of the various classes of networks.</p

    Analyzing and Modeling Real-World Phenomena with Complex Networks: A Survey of Applications

    Get PDF
    The success of new scientific areas can be assessed by their potential for contributing to new theoretical approaches and in applications to real-world problems. Complex networks have fared extremely well in both of these aspects, with their sound theoretical basis developed over the years and with a variety of applications. In this survey, we analyze the applications of complex networks to real-world problems and data, with emphasis in representation, analysis and modeling, after an introduction to the main concepts and models. A diversity of phenomena are surveyed, which may be classified into no less than 22 areas, providing a clear indication of the impact of the field of complex networks.Comment: 103 pages, 3 figures and 7 tables. A working manuscript, suggestions are welcome

    More than smell - COVID-19 is associated with severe impairment of smell, taste, and chemesthesis

    Get PDF
    Recent anecdotal and scientific reports have provided evidence of a link between COVID-19 and chemosensory impairments, such as anosmia. However, these reports have downplayed or failed to distinguish potential effects on taste, ignored chemesthesis, and generally lacked quantitative measurements. Here, we report the development, implementation, and initial results of a multilingual, international questionnaire to assess self-reported quantity and quality of perception in 3 distinct chemosensory modalities (smell, taste, and chemesthesis) before and during COVID-19. In the first 11 days after questionnaire launch, 4039 participants (2913 women, 1118 men, and 8 others, aged 19-79) reported a COVID-19 diagnosis either via laboratory tests or clinical assessment. Importantly, smell, taste, and chemesthetic function were each significantly reduced compared to their status before the disease. Difference scores (maximum possible change ±100) revealed a mean reduction of smell (-79.7 ± 28.7, mean ± standard deviation), taste (-69.0 ± 32.6), and chemesthetic (-37.3 ± 36.2) function during COVID-19. Qualitative changes in olfactory ability (parosmia and phantosmia) were relatively rare and correlated with smell loss. Importantly, perceived nasal obstruction did not account for smell loss. Furthermore, chemosensory impairments were similar between participants in the laboratory test and clinical assessment groups. These results show that COVID-19-associated chemosensory impairment is not limited to smell but also affects taste and chemesthesis. The multimodal impact of COVID-19 and the lack of perceived nasal obstruction suggest that severe acute respiratory syndrome coronavirus strain 2 (SARS-CoV-2) infection may disrupt sensory-neural mechanisms. © 2020 The Author(s) 2020. Published by Oxford University Press. All rights reserved
    corecore